Brain Struct Funct (2016) 221:2049–2059
Novel subventricular zone early progenitor cell-specific adenovirus for in vivo therapy of central nervous system disorders reinforces brain stem cell heterogeneity.
Reetz J, Hildebrandt S, Schmidt A, Meier C, Herchenröder O, Gläser A, Witt M, Pützer BM, Wree A.
Neural stem/progenitor cells (NSPCs) have the potential to self-renew and to generate all neural lineages as well as to repopulate damaged areas in the brain. Our previous targeting strategies have indicated precursor cell heterogeneity between different brain regions that warrants the development of NSPC-specific delivery vehicles. Here, we demonstrate a target-specific adenoviral vector system for the in vivo manipulation of progenitor cells in the subventricular zone of the adult mouse brain. For this purpose, we identified a series of peptide ligands via phage display. The peptide with the highest affinity, SNQLPQQ, was expressed in conjunction with a bispecific adaptor molecule. To verify the targeting potential of the specific peptide, green fluorescent protein-expressing Ad vectors were coupled with the adaptor molecule and injected into the subventricular region of adult mice by stereotaxic surgery. An efficient and selective transduction of NSPCs in the SVZ was achieved, whereas hippocampal NSPCs were negative. Our results offer an expeditious and simple tool to produce retargeted viral vectors for a specific and direct in vivo manipulation of these progenitor cells. This powerful technique provides an opportunity to develop innovative strategies and express therapeutic genes in specific types of neural progenitor cells to allow success in treatment of brain disorders.
Kontakt
Institut für Experimentelle Gentherapie und Tumorforschung
Core-Facility Virale Vektor & Genom-Editing Technologien
Biomedizinisches Forschungszentrum
Schillingallee 69
D-18057 Rostock
Sekretariat
Ingrid Winkler
(+49) 381 494-5066(+49) 381 494-5062
ingrid.winkler@med.uni-rostock.de
Department Leben, Licht & Materie
Forschungsbau LL&M
Albert-Einstein-Str. 25
D-18059 Rostock
Forschungsbau LL&M
Albert-Einstein-Str. 25
D-18059 Rostock